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Loop structure of percolation hulls
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The loop structure generated by the percolation hulls in two dimensions is investigated both for ran-
dom percolation and for the percolation properties of interacting, diffusing particles using the gradient
diffusion method. Scaling forms for the loop distribution function are proposed and verified numerical-
ly. The results show that while bonding nearby particles on the original hull reduces its fractal dimen-
sion from Dy 2% to Dy = %, no further change in Dy is observed when additional bonds are placed on

the already reduced hull. A similar behavior holds for strongly interacting particles during phase sepa-
ration on length scales larger than the characteristic droplet size.

PACS number(s): 64.60.Ak, 05.40.+j

A percolation cluster in two dimensions is a fractal ob-
ject with fractal dimension D =2 [1]. A more detailed
analysis reveals that it is a closed structure containing
loops of all sizes, up to the cluster size itself. As a conse-
quence almost all particles lie in the interior of the clus-
ter. The ensemble of particles accessible from the outside
is called hull H, or external perimeter [2]. This subset
forms a cluster with a smaller fractal dimension, Dy =7
[3-5]. A second hull H(r) can be constructed by con-
necting all particles of H, that are a distance r apart (r is
necessarily larger than 7, the bond length of the percola-
tion construction). This operation blocks the access to
those parts of the hull which are connected to the outside
only by narrow channels. The reduced hull H (7), i.e., the
particles which are still accessible from the outside after
adding the bonds, has an even lower fractal dimension,
Dy =4 [5,6]. The hulls generated by the different rules
are illustrated in Fig. 1. The changing of the hull proper-
ties due to new bonds is specific to two dimensions and is
not observed in three dimensions [7].

The change in fractal dimension from Dy to Dy has
been investigated by Monte Carlo simulations [8] for the
continuum percolation model [9]. The advantage of con-
tinuum percolation is that the bond length » can be varied
continuously. The calculation shows that the fractal di-
mension changes from Dy to Dy for any bond length
r>ry, no matter how small 8 =(r —r;y). A scaling
analysis [10] reveals that there exists a crossover length
o* such that the fractal dimension of a hull of linear size
o is Dy for 0 <<o™* and Dy. for o0 >>0*. o* diverges as
o* ~8r% with a= —1.37 as &r —0.

The purpose of this investigation is to give a more de-
tailed description of the structure of percolation hulls in
two dimensions. Scaling theory proves to be relevant for
most properties of the incipient infinite percolation clus-
ter and its hull. Modifying the connectivity of the hull
changes its scaling behavior; it necessarily creates loops
on all scales. We anticipate that the distribution of these
loops also has scaling form.

In the present calculation we study the scaling proper-
ties of the loops generated by the reduced hull construc-
tion for standard site percolation. We use a square lattice
(lattice spacing r,) and randomly put particles on a frac-
tion p of the sites. Clusters are defined by placing bonds
between all particles on nearest-neighbor sites. The hull
of a cluster [2] consists of those sites which can be
reached from the outside by a continuous path which
does not cross any bond of the cluster. A different but
equivalent procedure defines the hull as those sites which
can be reached from the outside by steps on the empty

FIG. 1. Percolation structures relevant to the present study.
All dots correspond to occupied sites. The filled black dots are
the percolation cluster (top left), the standard hull (top right),
the reduced hull (bottom left), a loop generated by the reduced
hull construction (bottom right).
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lattice sites of length ry or r4V'2. To construct a reduced
hull, additional bonds of length r =r0\/ 2 (second nearest
neighbors) are placed between the particles of an isolated
cluster [5]. The sites that are still accessible from the out-
side form the reduced hull. Other reduced hulls
can be generated by placing bonds of lengths
r=2rq,roV 5,75V'8, . . . on the cluster. The reduced hull
construction defines loops in a natural way (Fig. 1).

A hull is a closed linear object. Therefore it is natural
to define the length h,, of the original hull as the number
of steps of length r, needed to “walk” along the hull.
The number of bonds may differ slightly from the number
of steps but is expected to scale in the same way. The
length A, of the reduced hull is defined analogously to
h,, but allowing for steps of length r whenever possible.
Finally, the length 4 of a loop is equal to the number of
steps of length r; on the original hull between the two
sites that are newly connected by the extra bond of length
r.

We first use a scaling argument to calculate the num-
ber of loops of length 4 on the reduced hull H(r). The
length A, of the original hull H, (corresponding to the
quantity N, defined in Ref. 3]) is related to its linear size

o by h, ~0D” . Correspondingly, the length A, of the
reduced hull scales as h;,, ~o ?. The number of loops
of length h generated by the reduced hull construction is

assumed to have power-law form N, ~h ", We further-
more assume that the number of loops per site of the re-
duced hull does not depend on A, (this means that A,
only acts as a cutoff). For a reduced hull of }inear size 4
the number of loops scales as Nj ~hi,h "~oBh .
As the total number of particles on the hull is
he= 3, AN, ~o”" one finds Ty =1+Dy./Dy. Insert-
ing the numerical values for Dy and Dy yields
7, =31=1.76. This result can also be understood from
comparing the total area occupied by the loops with the
area occupied by the hull as a whole.

Placing new bonds between all sites of a percolation
hull that are a distance » > r; apart not only generates a
reduced percolation hull with its loops, but it also creates
loops within loops, etc. The total number of loops creat-
ed by all the new bonds, independent of whether they are
on the reduced hull or on a loop is called N,. It is ex-
pected to be related to the fluctuations of the length of
the interface, relevant for example for an assembly of ran-
domly diffusing particles, because an extra bond poten-
tially short-circuits a large portion of the hull just as a
diffusing particle may clog a bottleneck. Both operations
are random and local and therefore they should have the
same effect on large scales. These fluctuations have been
determined: analytical arguments and numerical simula-
tions agree that they scale as k.2 ~''/7 [11]. Our numer-
ical results confirm that N, indeed scales in the same
way.

The numerical results were obtained from calculations
on a square grid using the gradient percolation method
[3,12] in which the average density p(x,y) of occupied
sites varies linearly in the x direction and is homogeneous
in the y direction (periodic boundary conditions). The
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boundary of the largest cluster then corresponds to the
percolation hull, and the hull width o plays the role of
the correlation length. o increases as tb?/goncentration
gradient Vp decreases, scaling as 0 ~Vp " 13].

Gradient percolation is used for two reasons: (i) it is
directly relevant to the formation of rough interfaces [13]
and (ii) it is an efficient computational tool which does
not require a knowledge of the percolation threshold.
This is particularly useful when studying a system in a
transitory state where the percolation threshold p,
changes. In the second part of our study the elementary
cluster size increases in time, leading to a corresponding
decrease of p, [14,15].

Figure 2 shows N, the total number of loops for two
different bonding rules, as a function of the concentration
gradient Vp. It scales with an exponent a; =0.431, in
close agreement with the exponent a, =0.429 for the to-
tal number of particles on the hull. This confirms that
the number of loops per hull particle does not depend on
the length of the hull.

The number N, of loops of length A on the reduced
hull is presented in Fig. 3 for different bond lengths and
gradients. Two bonding rules were used: r =r,V'2 and
2ry. To make N, independent of the sample width it has
been normalized by L,. The curves scale with an ex-
ponent 7, =1.72 and 1.74, respectively, in good agree-
ment with 7, =1.76 from scaling considerations. The
data for r =r;V'2 is shown for two gradients to illustrate
the finite-size effects. The scaling form sets in for very
small 4 and holds up to the rather sharp cutoff just below
htot'

An assembly of randomly diffusing particles in a con-
centration gradient naturally defines a fluctuating inter-
face. One expects that for small concentration gradients
the interface defined by the diffusers has the same fractal
properties as the percolation hull studied here. In partic-
ular, the distribution function of the fluctuations of the
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FIG. 2. Total number of loops, Ny, =(1/L,) 3, N;, as a
function of the inverse concentration gradient Vp ! (log-log
plot). Loops generated by bonds of length r=rov2 (#) and
r =2r, (open squares) are compared. The measured exponent
a; =0.431 (same for both curves) shows that N, scales like
h o, the total length of the hull.
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FIG. 3. Normalized number of loops of length /4 on the re-
duced hull, (1/L, )N;,. The different curves correspond to
different bond lengths » and gradients: nearest-neighbor bonds
(r =ryV2) (open squares), second-neighbor bonds (r =2r,) (¢)
with a gradient Vp=ﬁo—5 [100 independent realizations on a
(1648)? lattice], and r =r,V2 for a larger gradient Vp= g
(filled dots). The exponents determined from the slope are
=172 (r =ryV'2) and 75, =1.74 (r =2r,). The upper cutoff is
determined by the gradient.

interface for the diffusers should be equal to the loop size
distribution calculated here for gradient percolation. To
verify that the number of all the loops of length 4 (includ-
ing loops within loops) scale with the same power as the
statistics of the hull fluctuations, the total loop distribu-
tion was computed for the same types of bonds as in Fig.
3. Figure 4 shows the data. The measured exponents
7, =1.56 and 1.54 for r =r,V'2 and 2r, respectively, are
in good agreement with the scaling exponent 1 =1.57 of
the diffusion problem [11]. The static calculations per-
formed here improve the statistics and allow for larger
systems than the direct observation of the fluctuations.
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FIG. 4. Normalized total number of loops, (1/L,)N,, as a
function of its length 4 on the original hull. The same symbols

are used as in Fig. 2. The measured values for the exponent 7,
are 7, =1.56 (r =rqV'2) and 7, = 1.54 (r =2r).
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Comparing the data for different gradients shows that the
scaling prediction is approached from below. The
effective exponents obtained here coincide very well with
the ones obtained from the fluctuation measurements for
the same gradient.

In order that the fractal dimension changes when pass-
ing from the standard to the reduced hull the exponent 7,
of the loop size distribution must be smaller than 2. To
check whether the fractal dimension changes further
when reducing an already reduced hull, bonds of length
r =2r, were placed on a hull which was already reduced
by bonds of length r =r;V2. The number of such loops
is shown in Fig. 5. The statistics is less good than in Fig.
4 as there are fewer loops altogether. Nevertheless
the corresponding exponent can be estimated as
7, =2.28(10). It is clearly larger than 2 which confirms
that there is no further change in Dy..

So far we have considered hulls generated by random
percolation on a lattice which describe a random
diffusion process with a concentration gradient. It is in-
teresting to extend the study of the hull to systems of in-
teracting particles because then the lattice spacing and
the elementary length of the percolation structure no
longer coincide. Earlier work [15] on diffusion with in-
teraction in the gradient geometry has shown that the
connectivity properties of strongly interacting particles
during phase separation can be described in terms of ran-
dom percolation on length scales larger than the charac-
teristic droplet radius.

We have studied the hull properties for diffusing parti-
cles under the influence of a strong attraction between
the particles such that phase separation takes place. The
initial configuration is the same as in the noninteracting
case described above. Particles then diffuse by hopping
to empty nearest-neighbor sites. The jump rJatke TE'V is
determined by the interaction J <0, W~e ks NN
where nyy is the number of particles on nearest-neighbor
sites of the diffuser before the jump. The temperature is
chosen such that J /kz T = —2.0 (the critical temperature
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FIG. 5. Number of loops, (1/L,)N,’ of length h generated by
bonds of length r =2r; placed on the hull already reduced by
bonds of length » =ryV'2. The slope determines the exponent
T, =2.28.
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FIG. 6. Hull of diffusing particles during coarsening. The
size distribution of total number of loops on the original hull
(i.e., before diffusion) is shown for comparison. The different
curves correspond to different times 7 (Monte Carlo diffusion
steps): 7=0 (open squares), 10 (open triangles), 100 (filled dots).
The asymptotic (large /) slope is unchanged but the total num-
ber of loops decreases with time. 100 samples were averaged on

a (512)* lattice. The gradient for the original hull is Vp = 1.

T, corresponds to J/kgT.=—1.76). Coarsening leads
to droplets whose radius R evolves in time according to
R ~t'3 [16]. During this evolution, the percolation
threshold decreases from the value p.=0.593 for the
square lattice to p, =0.5 anticipated for large droplets by
the particle-hole symmetry [14,15]. The percolation
properties are extracted at different times during the
coarsening process in exactly the same way as for the
noninteracting system.

The analysis of the loop structure of the interacting
system is presented in Figs. 6 and 7. Figure 6 shows the
change of the loop size distribution for all loops during
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FIG. 7. Size distribution of the loops on the reduced hull dur-
ing coarsening (same symbols as in Fig. 6). In the intermediate
range indicated by the vertical bars the slope changes from 7, to
74. The position labeled R corresponds to the size of the drop-
lets, whereas the position R* corresponds to the distance
beyond which the reduced hull properties are recovered.
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coarsening. The following changes occur: (i) for small
fixed 4 the number of loops drops rapidly with time, (ii)
the number of loops of the coarsened system is lower
than for the noninteracting case, and (iii) for large /4 the
slope of the coarsened system approaches the same value
as for the noninteracting case. These properties can be
explained in terms of the droplet picture. The lack of
small loops is due to the surface tension induced by the
interaction. This effect prevents the formation of loops of
linear size up to ~R. No change in the scaling law is ex-
pected for A >>1 if the droplets of size R are distributed
randomly. The scaling of the hull structure can then be
compared with the one found for continuum percolation
[10]. R increases with time and the crossover towards
the asymptotic (noninteracting or 7 = o« ) regime shifts
to larger and larger values. The data of Fig. 6 is con-
sistent with this picture.

Figure 7 shows the data of the interacting system for
the loops on the reduced hull (due to the interaction the
reduced hull changes). For small A, corresponding to
loops of radius less than R, the curves are qualitatively
similar to those of Fig. 6. For intermediate 4 a change of
the slope from 7, to 7, is observed. This is due to the
fact that in this range the probability for two droplets of
size R to be bonded is small and the hull behaves like the
fluctuation problem. For larger & one expects a second
crossover at R* back to the reduced hull exponent,
analogous to continuum percolation. With time R and
R * shift to larger values.

The expected changes in the reduced hull structure
during coarsening can also be observed in the properties
of the second hull placed on top of the first one. Figure 8
shows data for interacting particles when a hull with
r =2r, is placed on a hull with » =r;V'2. Again, as the
particles diffuse several different regimes appear. For
small A the surface tension lets the number of loops drop
very rapidly. For intermediate 4 (on scales larger than
the droplet size R) the surface tension renders the bonds
of length r=ryV'2 ineffective in closing loops. The
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FIG. 8. Loop distribution generated by placing bonds of
length » =2r, on top of a hull generated by bonds of length
r =ryV'2, during phase separation (same symbols as in Fig. 6).
See discussion in text.
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FIG. 9. Ratio N, /N, of the number of loops on the reduced
hull with r =r;V'2 over the number of loops on the original hull
during coarsening, as a function of time. The noninteracting
system (open squares) scales with an exponent 7, — 7, = —0.19,
the interaction (filled dots) “opens up” the loops for small A.
This leads to an increase of the number of loops with time.

second hull effectively acts like the first hull with an ex-
ponent 75,. This is clearly visible: the number of r =2r
loops increases and the slope decreases. On a very large
scale the » =r;V'2 loops become effective again and the
original 7}, ought to be recovered.

A particularly clear way to see the effect of the interac-
tion is presented in Fig. 9. The ratio of the number of
loops of length 4 on the reduced hull over the number of
loops of length & on the original hull (both generated by
bonds of length r =r;V'2) is plotted for different times.
The noninteracting case (which, for small gradients, is
equivalent to gradient percolation) follows a straight line
with slope 7), —7, =0.19. Because of the interaction this
ratio is expected to become constant for small 4 (due to
the opening up of the hull as R increases) and introduces
a crossover towards the noninteracting behavior for
larger h. The same effect is also observed for the ratio of
the number of loops generated by » =2r, on the external
hull over those generated by r =r,V'2 loops on the total
hull. In both cases the ratio increases with time as the
closing of » becomes less and less effective. Correspond-

outside (low density)
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hull b=1/

inside (high density)

FIG. 10. Schematic representation of the renormalization
procedure to generate reduced hull (b =2): a part of the origi-
nal hull is shown as filled gray squares, the corresponding block
hull after renormalization is shown as large open squares.
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FIG. 11. Total length of the hull, generated by the block
method, as a function of the inverse concentration gradient.
Both for the nondiffusing and for the diffusing cases, the origi-
nal hull (b =1, filled dots) is compared with block hulls for
b =2 (open squares) and b =4 (). The interaction diminishes
the total length of the original hull but increases it for the
blocked hulls. The measured slopes for the original (reduced)
hulls are ay =0.43 (ay =0.21).

ingly, the crossover size R * shifts to larger values.

According to general renormalization considerations,
scaling results usually do not depend on microscopic de-
tails. This means that the rule to construct reduced hulls
by placing bonds between nearby sites of the percolation
cluster can be modified without changing the essential re-
sults. In this spirit we therefore consider the following
new method to construct a coarse-grained percolation
hull (Fig. 10): a block site is associated with every square
of side length b (b? sites). The site is occupied if at least
one of the associated sites on the original lattice is occu-
pied. The block cluster is necessarily connected on the
block lattice. The sites which are accessible from the out-
side then play the role of the external hull. One expects
that the block side length b corresponds to the bond
length r. We have calculated the total length of the hull
h.. for the original hull (b =1) and for two blocked
hulls, with b =2 and 4, respectively, and present it in Fig.
11. The slope of the hulls on the block lattices have
slopes 0.206 (b =2) and 0.205 (b =4), in close agreement
with the results from the bonding method. Furthermore,
the interaction has a very different effect on the original
hull and on the blocked hulls. The former decreases,
essentially due to straightening of fractal segments on
scales smaller than R, whereas the block hulls become
longer due to the opening up of loops which were closed
by the block building process.

In conclusion, the results obtained from simulations of
percolation hulls in two dimensions show that reducing
hulls either by bridging or by block building generates a
power-law distribution of loops. The closing of very
large parts of the front during the first reduction step
leads to a drop in the fractal dimension but there is no
further change as subsequent reduction steps only close
small parts of the remaining hull.
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Counting all the loops generated by bonding nearby
particles can be compared with the fluctuations of an in-
homogeneous distribution of diffusing particles. Letting
them interact (attraction) permits separation of the drop-
let size R and the elementary percolation length r,. The
bonding length r (or b for the block building method)
then can be chosen such that /R <<1 and the problem
becomes comparable to continuum percolation (provided
that the droplets of size R are only weakly correlated —

which is confirmed by the simulations). The fluctuations
are visible from the outside up to a distance R *, and in-
crease with R * during coarsening.

We acknowledge stimulating discussions with J. F.
Gouyet and B. Sapoval. Laboratoire de Physique de la
Matiere Condensée is “Unité de Recherche associée au
Centre National de la Recherche Scientifique.”

[1] D. Stauffer and A. Aharony, Introduction to Percolation
Theory (Taylor & Francis, London, 1992).

[2]R.F. Voss, J. Phys. A 17, L373 (1984).

[3] B. Sapoval, M. Rosso, and J.-F. Gouyet, J. Phys. Lett. 46,
149 (1985).

[4] The scaling properties of percolation hulls have been relat-
ed to the problem of kinetic walks [A. Weinrib and S. A.
Trugman, Phys. Rev. B 31, 2993 (1985)] and to polymer
chains [A. Coniglio, N. Jan, I. Majid, and H. E. Stanley,
Phys. Rev. B 35, 3617 (1987)].

[5] T. Grossman and A. Aharony, J. Phys. A 19, 1L.745 (1986);
ibid. 20, L1193 (1987); P. Meakin and F. Family, Phys.
Rev. A 34, 2558 (1986).

[6] H. Saleur and B. Duplantier, Phys. Rev. Lett. 58, 2325
(1987).

[7]J. F. Gouyet, M. Rosso, and B. Sapoval, Phys. Rev. B 37,
1832 (1988); P. N. Strenski, R. M. Bradley, and J. M. De-
bierre, Phys. Rev. Lett. 66, 1330 (1991).

[8] M. Rosso, J. Phys. A 22, L131 (1989).

[91 E. T. Gawlinsky and H. E. Stanley, J. Phys. A 14, 1291

(1981); T. Vicsek and J. Kertesz, ibid. 14, L31 (1981).

[10] M. Kolb, Phys. Rev. A 41, 5725 (1990).

[11] B. Sapoval, M. Rosso, J. F. Gouyet, and Y. Boughaleb, in
Fractals in Physics, edited by L. Pietronero (Plenum, New
York, 1989); J. Gouyet and Y. Boughaleb, Phys. Rev. B
40, 4760 (1989).

[12] M. Rosso, J.-F. Gouyet, and B. Sapoval, Phys. Rev. B 32,
6053 (1985).

[13] R. P. Wool, in New Trends in Physics and Physical Chem-
istry of Polymers, edited by Lieng-Huan Lee (Plenum, New
York, 1989), p. 129; J. F. Gouyet, M. Rosso, and B. Sapo-
val, in Fractals and Disordered Systems, edited by A.
Bunde and S. Havlin (Springer-Verlag, Berlin, 1991), p.
229.

[14] A. Coniglio, J. Phys. A 8, 1773 (1975).

[15] M. Kolb, T. Gobron, J. F. Gouyet, and B. Sapoval, Euro-
phys. Lett. 11, 601 (1990).

[16] I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19,
35(1961); C. Wagner, Z. Elektrochem. 65, 581 (1961).



